
PERA: Ad-Hoc Routing Protocol for Mobile Robots

Carlos Agüero Vicente Matellán Pedro de-las-Heras-Quirós José M. Cañas
DIET (Departamento de Informática, Estad́ıstica y Telemática)

Universidad Rey Juan Carlos
C/ Tulipán s/n, Móstoles (Madrid, España)

{caguero,vmo,pheras,jmplaza}@gsyc.escet.urjc.es

Abstract

Mobile robots need to be able to communicate among
them, and with other hosts participating in a given
task. Traditional wired networks are obviously not
suitable for mobile robots. Current wireless networks
are usually based on a fixed network infrastructure (base
stations) to route packets. The best alternative for
mobile robots are Ad-Hoc networks, which are wire-
less networks that do not need a fixed infrastructure.
This paper describes PERA, an adaptation of an ad-
hoc routing protocol that runs on Eyebot mobile robots.
By using PERA, a robot can send messages to other
robots or hosts that are not directly reachable through
its radio antenna, by routing messages through inter-
mediate mobile robots. The design, implementation
and lessons learned in the initial tests of PERA are
presented in this paper.

1 Introduction

Let’s imagine a group of mobile robots working in a
rescue situation [14]. In this kind of environment the
communication infrastructure may be severely dam-
aged, so robots can only trust on their own capabilities
to communicate among them. In an scenario where a
robot finds a victim, it should be able to send images
to the mobile host where a human operator is super-
vising the rescue mission, even if this host is out of
the range of the robot’s radio. This can be done by
using other robots as intermediate hops in the route
towards the human operator.

Wireless networks can be classified into two groups
attending to their dependence of some kind of infras-
tructure: Infrastructure networks and Ah-Hoc net-
works. This paper explores the use of Ad-Hoc net-
working to satisfy communication needs among mobile
robots.

Traditional routing protocols used in fixed networks
such as the Internet are not well suited for Ad-Hoc
networks, because they do not stabilize under frequent
changes in connectivity among routing nodes. In a
network of mobile robots the change of connectivity is
the norm.

Figure 1: Eyebot robot

Many researchers have created routing protocols for
Ad-Hoc networks. These protocols incorporate mech-
anisms to adapt routing tables to the frequent mobility
of nodes, while trying to maintain a low power con-
sumption. This is not an easy task, as the frequent
change of connectivity induces the need of a frequent
exchange of messages that helps to update routing ta-
bles.

In this paper we describe PERA, which is an adap-
tation of one of these protocols to the world of mobile
robots. PERA is a protocol inspired in the AODV
(Ad-Hoc On-Demand Distance Vector) [11] routing
protocol. An implementation of PERA has been pro-
grammed as a library to communicate robots with in-
dependence of their radio scope. An implementation
of PERA that runs on the Eyebot mobile robot is de-

1



scribed in this paper.
Eyebot robots are equipped with three infrared sen-

sors, two encoders and a camera. In addition, robots
are supplied with a communication module that is
used by PERA. All those devices are managed by the
RoBios operating system. The PERA library is built
using the RoBios API.

The rest of the paper is organized as follows: section
2 provides an introduction to Ad-Hoc networking in
mobile robots. The PERA protocol specification is
presented in section 3. Section 4 describes PERA’s
design library. Finally, the implementation and tests
done on the Eyebot mobile robots are described on
section 5.

2 Ad-Hoc Routing protocols for mo-
bile robots

Each mobile robot must be configured as a router
and should collaborate by routing packets it receives
from neighbour robots. Before robots can route pack-
ets towards its destinations, they need to discover good
routes by running routing protocols.

Routing protocols used in wired networks are not
a good choice to communicate mobile robots. These
protocols assume that the network is fixed, that the
batteries are always full and they also assume that
the bandwidth is constant. All those assumptions do
not hold in mobile robots. Other protocols have been
proposed that have better efficiency because they ac-
commodate to the special features of robots. We can
separate them into two different groups: based in rout-
ing tables and based in on demand routing.

Protocols based in routing tables maintain a table
that allows them to route to any destination. This
kind of protocols send lots of routing information for
updating changes in the network connectivity. These
are examples of this category of protocols: DSDV (The
Destination-Sequenced Distance-Vector Routing Pro-
tocol) [13], CGSR (Clusterhead Gateway Switch Rout-
ing) [15] and WRP (The Wireless Routing Protocol)
[10].

On the other hand, protocols based in on demand
routing only store in their tables the routes that are
really needed. When a packet addressed to an un-
known destination is received by a router, a route
discovery process is initiated on demand in order to
learn a new route. A route maintenance process is also
needed to keep fresh the routes learned and to delete
unused routes. Some examples of this category are:
AODV (Ad Hoc On-Demand Distance Vector Rout-

ing) [11], DSR (Dynamic Source Routing) [9], LMR
(Lightweight Mobile Routing) [4], TORA (Temporary
Ordered Routing Algorithm) [11], ABR (Associative-
Based Routing) [17] and SSR (Signal Stability Rout-
ing) [6].

3 The PERA Ad-Hoc routing protocol

PERA tries to fulfill the following requirements:

• Each robot can send data to any other robot.

• Each robot can receive data from any other robot.

• Movement of robots is allowed without disturb-
ing communications.

• Multiple applications running concurrently on
the same robot can use PERA in order to send
/ receive.

• Every robot can send to a particular application
running on a given robot.

• The library providing the PERA protocol should
allow to choose between unicast and broadcast
transmission.

These requirements are not always possible to ful-
fill: when there is not available a path of intermediate
robots between the source robot and the destination
robot of a message, PERA can not help.

The major limitations that Eyebot robots pose to
PERA lie on the RoBios OS. The maximum size of a
data packet is limited to 35 bytes.

Some protocols based in on demand routing include
the complete path in each data packet. This path is
included in the packet when it is first sent, so that
intermediate nodes can route the packet by consulting
the path included on it. Due to the small size of data
packets, this option was discarded.

Protocols based on tables were evaluated as a pos-
sibility to implement PERA, but they were soon dis-
carded, because they would collapse the network just
with control traffic only to maintain a real time vision
of connectivity.

Instead, PERA uses a protocol based in on demand
routing that is table driven: each mobile robot main-
tains a table with routes. Packets only contain the ad-
dress of the destination robot. An intermediate robot
consults its table in order to choose the next hop. Con-
trary to what happens in protocols based in routing
tables, as the ones used on the Internet, the protocol
used in PERA only updates tables on demand.



There are two main tasks that the routing function
must fulfill: route discovery and route maintenance,
which are used, respectively, to initially fill the table
when a packet must be routed to an unknown desti-
nation, and later, for keeping updated a given route
updated in case it is still needed. For this reason, each
entry in the route table that is stored by each robot
can be erased or updated. This is why all the routes
stored in the routing table include a field named life-
time, as shown in figure 2. When route maintenance
detects a route is too old, its lifetime field will not be
refreshed. The Lifetime field, together with the se-
quence number field ensure that a robot does not use
old routes and that routing cycles not exist.

Figure 2: Routing table in PERA

3.1 Route discovery

This process is triggered by a robot when it wants
to send a packet to another robot and the first one
has not an active route for the desired destination on
its routing table. This process ends when a route is
discovered (in case it exists), and has a side side effect
on intermediate routers.

The process begins with the sender composing a
RREQ (Route Request packet, which includes the iden-
tifier of the robot which wants to later send a mes-
sage. The identifier of the source robot and a special
ID identifies uniquely this RREQ. Then, the robot
broadcasts this message. Closeby robots that receive
this RREQ must rebroadcast the packet. By flood-
ing this initial message, the route discovery process
ensures that the destination, in case it is reachable
through any existing route, will be reached by this
RREQ message.

All robots must check the ID and the originator
of the RREQ in order to avoid unnecessary flooding.
This way a RREQ that has been previously received
and resent by a given robot can be discarded. The
RREQ ID is incremented each time a new route dis-
covery is initiated, so that when the conditions of con-
nectivity change this new route discovery is not dis-
carded by intermediate robots.

Each time an intermediate robot receives an RREQ,

it learns the reverse route to the source of the RREQ:
the next hop is the neighbour robot that has sent this
RREQ to us (we suppose symmetrical links).

In case the RREQ is finally received by the final
destination, it will send back a RREP (Route Reply)
packet addressed towards the source of the RREQ re-
ceived. This RREP packet is sent towards the sender
of the RREP, following the reverse route that fol-
lowed the RREQ. This reverse route has been already
learned and stored by the intermediate routers when
the RREQ was flooded. When the RREP reaches an
intermediate robot, it learns the reverse route towards
the origin of the RREP, and stores it on its routing ta-
ble. Note that this is exactly the routing information
that was originally seeked for by the robot that initi-
ated the route discovery.

An optimization that accelerates the pace of route
discoveries is used in PERA. When a robot receives
an RREQ, even if it is not addressed to him, it can
reply with an RREP in case it already knows a route
to this protocol. The advantage of this hack is that
RREQ’s don’t need to be flooded everywhere in the
net of robots, in case someone already knows a route
that is being discovered. It is always necessary to con-
sider that a RREP packet originated by an intermedi-
ate robot should not have an older sequence number
than the sequence number included in the RREQ for
the final destination that it is responding to.

Figure 3: Route discovery

As an example, in figure 3 robot A wants to send
some information to robot D. First, A needs to dis-
cover a route towards D. It is thus necessary to initiate
a route discovery process. Robot A creates a RREQ
packet. This packet contains the source node’s address
(A) and the current sequence number at node A, as
well as the destination ’s address (D). The RREQ also
contains a broadcast ID (1), that is incremented each
time the source robot initiates a new RREQ. After
creating the RREQ, robot A broadcasts the packet.
When neighbour robot B receives it, it first checks
whether it has seen this RREQ before, by checking
the source address and broadcast ID pair. Each robot
maintains a record of the source address / broadcast



ID for each RREQ it receives.
In our example, robot B processes the packet. Robot

B learns how to route packets to A and stores this in-
formation on its routing table. Then, robot B broad-
casts the RREQ to his neighbors. This second RREQ
is received by robot A, that silently discards the packet
because it recognizes it as packet already broadcast
by him (in fact A was the originator of this RREQ).
However, robot C, who also receives the RREQ, re-
broadcasts it to his neighbors, after storing on its ta-
ble a route towards A that passes through neighbour
B. When robot B receives the RREQ broadcasted by
C, it discards the packet. When node D receives the
packet broadcasted by C, it learns a route towards A,
that passes through C. Then, it unicasts an RREP
packet back to the source A. Now, node D already
knows which neighbour it must send the RREP ad-
dressed to A. By consulting its routing table, it sees
it’s node C. The RREP then reaches C, who this way
learns a way towards node D, and stores it on its rout-
ing table. Then, C checks its routing table and there
it learns that the RREP addressed to A must be sent
to B. When B receives the RREP, it learns a route
towards D (through C) and stores it on its routing ta-
ble. Finally, after checking its routing table, B sends
the RREP directly to A. When A receives the RREP,
it finally stores on its routing table a route towards
D (through neighbour B). This concludes the discov-
ery process in our example, once A has finally learned
a route towards D. Note that in fact the route is not
completely known to A. What A knows is that it must
send packets addressed to D to B. But B knows that
packets addressed to D must be sent to C. And C
knows that packets addressed to D can be send di-
rectly to D, as D is directly reachable through C.

As a final step, a counter is added in each RREQ,
to know the number of hops that packet has followed.
This counter is attached in each entry of a routing
table, and when a robot rebroadcasts an RREQ, it
must increment it.

3.2 Route maintenance

Once a route has been discovered for a given source
/ destination pair, it is maintained as long as needed
by the source node. Movement of nodes within the Ad-
Hoc network affect only the routes containing those
robots on its paths. Movements of robots that do not
affect those routes do not trigger any protocol action.
If during an active session the movement of the source
robot affects the route being used to route packets, the
source robot must reinitiate route discovery in order
to discover a new route to the destination. Each time

a robot sends a packet to a neighbour, it expects to
receive an ACK from it. This is the way the source
robot knows its packets are not being routed.

However, if the route is affected by the movement
of an intermediate robot (let’s call him “culprit”), an
RERR (Route Error package) packet will be sent to-
wards the source of data in order to inform him that
the route is no longer available. This RERR is sent by
the robot that is one hop before the “culprit”, when
it sends packets to the culprit and does not receive an
ACK for them (because the “culprit” is too far away
after moving).

When a neighbour receives a RERR, it deletes its
routes toward the unreachable robot, and then prop-
agates the RERR. When an RERR is received by its
destination robot, it initiates a new route discovery.

Neighborhood information is learned through broad-
casts sent by neighboring robots. Each time a robot
receives a broadcast from a given neighbour, it up-
dates the lifetime field associated with that neighbour
in its routing table. If at that time there is no entry
for that robot in the table, the node creates one. In
addition, all robots broadcast a Hello packet to inform
its neighbors periodically that it is still in the vicinity.

4 Design of the PERA library

We have build a communications library that can
be used to send messages between any pair of robots
in a herd, even when they are not directly reachable.
This functionality drastically increases the possibili-
ties of communication between Eyebots provided by
the EyeOS library.

The PERA library is structured in hierarchical mod-
ules following a traditional communications stack ar-
chitecture. Each level in the hierarchy provides ser-
vices to the level above, and provides services to the
level below through well defined interfaces.

In PERA we use four levels, ordered from lowest
to highest in the hierarchy: Link, net, transport and
application, following the TCP/IP architecture. Each
layer has an independent goal explained in next sub-
sections.

4.1 Link layer

The service this level provides to the net layer is a
transmission channel between neighbour robots. This
layer is the only one that depends on the type of robot.
In case we want to use the PERA library with other
robots (Lego, Pioneer,. . . ), other link layer must be
implemented, adapted to the physical communication



channel.
The functions of this level are to send and receive

data to / from robots that are directly reachable through
the Eyebot radio (in Eyebot the range is about 1.5-2
m.). Eyebot robots allow more than one application to
run simultaneously in one robot. This feature forced
us to develop a non blocking receive function.

4.2 Net Layer

The service offered by this layer to the transport
layer is the routing of packets between any pair of
robots, even if they are not neighbours. This is core
layer of PERA. It is here where we find the routing al-
gorithms that PERA uses, and where some data struc-
tures are implemented in order to store routing and
control information.

Addressing

Unic./ Host 3 Host 2 Host 1 Host 0 Port 2 Port 1 Port 0
Mult.

0 1 2 3 4 5 6 7

Table 1: Addressing scheme

We have created an addressing scheme adapted to
the peculiarities of the Eyebot communications infras-
tructure. Each robot must have an unique address (see
1).

PERA uses one byte of each packet for this purpose,
subdivided in three fields. First field (bit 7), selects
between a unicast or multicast address. When bit 7
is set to 0, it specifies an unicast address and when it
is set to 1 it specifies a multicast address (broadcast
is a particular address of multicast). The second field
(bits 6-3) choose the destination robot (we can address
a maximum of 16 robots). Finally, the last field (bits
2-0) selects the port inside the destination robot (see
section 4.3).

Data packet

Type Hop Hop Destin. Origin. Size Data
Source Destin. Addr. Addr.

0 1 2 3 4 5 ...

Table 2: Data message format

The format of the data message is illustrated in
table 2. It contains the following fields:
0-Type–Message identifier (0).
1-Hop Source–Source address of next hop.
2-Hop Destination–Destination address of next hop.
3-Destination Address–Destination address of data packet.
4-Originator Address–Source address of data packet.
5-Size–Data size in Bytes.
6-...-Data–Data.

Route request packet (RREQ)

Type Hop Hop Hop RREQ Dest. Dest. Orig. Orig.
Src Dest. Count ID Addr. Seq.Num. Addr. Seq.Num.

0 1 2 3 4 5 6 7 8

Table 3: RREQ (Route Request) message format

The format of the RREQ (Route Request) message
is illustrated in table 3. It contains the following fields:
0-Type–Message identifier (1).
1-Hop Source–Source address of next hop.
2-Hop Destination–Destination address of next hop.
3-Hop Count–The number of hops from source address
to the robot handling the request.
4-RREQ ID–A number uniquely identifying the par-
ticular RREQ when taken in conjunction with the
Originator Address.
5-Destination Address–The address of the destination
robot for which a route is desired.
6-Destination Sequence Number–The last sequence num-
ber received by the source robot for any route toward
the destination.
7-Originator Address–The address of the robot that
originated the route request.
8-Originator Sequence Number–The current sequence
number to be used for route entries pointing to (and
generated by) the source of the route request.

Route reply package (RREP)

Type Hop Hop Hop Destin. Destin. Orig. Lifetime
Src. Dest. Count Addr. Seq.Num. Addr.

0 1 2 3 4 5 6 7

Table 4: RREP (Route Reply) message format

The format of the RREP (Route Reply) message is
illustrated in table 4. It contains the following fields:
0-Type–Message identifier (2).
1-Hop Source–Source address of next hop.
2-Hop Destination–Destination address of next hop.
3-Hop Count–The number of hops from destination
address to the originator address.
4-Destination Address–The address of the destination
for which a route is supplied.
5-Destination Sequence Number–The destination se-
quence number associated with the route.
6-Originator Address–The address of the source robot
that issued the RREQ for which the route is supplied.
7-Lifetime–The time for which robots receiving the
RREP consider the route to be valid. This field will
be reduced in each hop, and if its value is 0, the mes-
sage will be discarded.



Route error package (RERR)

Type Hop Hop Unreachable Unreachable Destin.
Src. Destin. Destin.Addr. Destin.Seq.Num. Addr.

0 1 2 3 4 5

Table 5: RERR (Route Error) message

The format of the RERR(Route Error) message is
illustrated in table 5. It contains the following fields:
0-Type–Message identifier (3).
1-Hop Source–Source address of next hop.
2-Hop Destination–Destination address of next hop.
3-Unreachable Destination Address–The address of the
robot that has become unreachable because of a link
break.
4-Unreachable Destination Sequence Number–The last
known sequence number associated to the unreachable
robot.
5-Destination Address–The address of the destination
robot towards the RERR goes.

4.3 Transport layer

The transport layer offers the abstraction of ports.
It provides the service of multiplexing/demultiplexing
the radio channel among different applications. The
advantage of using ports is that now it’s possible to
establish a communications flow between two applica-
tions instead of between two robots.

It is necessary that an application binds to a free
port when it wants to receive packets addressed to
that port on that particular robot. Function bind as-
sociates one application to a port and does not permit
two applications to listen on the same port.

Having ports it is much easier to program applica-
tions that are composed by different threads of con-
trol. For example, a thread can run a reactive con-
troller which avoids obstacles by using infrared sen-
sors, while another thread is running the code that
guides the robot towards a ball using the camera.
Imagine that another robot needs to send data to one
of those threads on the first robot. Without ports
it would be more difficult to do this task because we
could not select between applications.

4.4 Application layer

Applications that use PERA can create a maximum
of 8 threads. Each one can send or receive the send,
receive and bind primitives offered by the transport

layer. Currently the PERA library does not provide
any communications protocol on the application layer.
In future releases we intend to provide application lay-
ers adapted to the communications needs of the appli-
cations we run on our robots.

5 Implementation and Tests

Implementation: An important feature that should
have the PERA library is transparency. With this fea-
ture in mind, we took some implementation decisions.
All applications execute in different threads and use
his own calls to send, receive and bind from the trans-
port layer. Send and receive buffers are used in the
transport layer to communicate with the net level.
One pair of buffers is reserved for each application
thread.

Figure 4: Implementation scheme using various levels

The net layer which is executing PERA is imple-
mented using a different and unique thread. This
thread checks each send buffer and, if there is some
data pending stored on one of them by the trans-
port layer of a sending thread, it takes it and sends
it. Then, the net thread receives and puts data in
the correct destination buffer according to the desti-
nation port. Other functions of the net layer are to
route packets to a neighbour and to answer RREP’s
received. Periodically, it must also check if it must
broadcast a Hello packet.

Tests: We have been testing the new library, sim-
ulating various situations in order to check the cor-
rect operation of PERA. We have developed an ap-
plication to configure the topology of the testbed net-



work. This way we can simulate multiple configura-
tions without needing to physically move the robots
used in the testbed.

In tests we have verified the proper propagation of
RREQs, RREPs and RERRs, the accurate writing,
updating and erasing of routes in the routing tables,
and the appropriate sending of HELLO messages.

Future trials will help us to measure some concrete
parameters such as latency, amount of missed pack-
ages, etc.

Next, we show an example of one of those tests for
checking RREQs and RREPs.

As shown in figure 5 in this trial there are three
robots labeled from 1 to 3. The scope of their radios
is represented by a circumference around each robot.

Figure 5: Diagram of robot situation in test

The goal of the test is that robot 1 sends a data
packet to port 2 of robot 3, containing the message
“Hi!”. Once it is received, robot 3 should answer to
port 2 of robot 1 with another data packet containing
the message “Goodbye”. For this test, we have config-
ured the HELLO INTERVAL parameter with a value
of 300 (seconds) (we don’t wanted to check that fea-
ture HELLO). The parameter TTL START has been
set to 127 (seconds). Adjusting this parameter we
make sure that routes do not expire during the test.

Robot 1 begins the trial composing a RREQ be-
cause its routing table is empty. Then broadcasts this
RREQ which is received only by robot 2. Robot 2
can not reply to robot 1 with an RREP, because its
routing table is empty too. Before robot 2 broadcasts
the RREQ again, it adds a new entry in his routing
table: The destination is robot 1 and the next hop is

robot 1 too (this means robot 1 is a neighbour). The
RREQ sent by robot 2 is received by robot 1 and robot
3. Robot 1 discards the message because it is in fact
who composed the RREQ packet. Robot 3 receives
the RREQ message from robot 2 and he notices he is
the destination. First, he adds en entry in his route
table towards robot 1 using robot 2 as next hop. Then,
robot 3 composes and sends a RREP message to robot
2 (consulting the routing table) with final destination
robot 1. Robot 2 receives the RREP and looks for an
entry in his routing information for send the packet
to robot 1. He finds in the routing table that robot
1 is a neighbour. He can send the RREP directly.
Robot 2 adds an entry in his route table for robot 3
(neighbour). Robot 1 receives the RREP and adds a
new entry towards robot 3, using the neighbour which
has received the RREP (robot 2). Figure 6 shows the
routing information in all robots at this moment.

Figure 6: Routing information when robot 1 receives
RREP

Now, robot 1 sends the data message (“Hi!”) to
robot 2 and robot 2 sends it to robot 3 (always con-
sulting the routing table). Robot 3 receives the data
packet and begins the reply of a data packet contain-
ing “Goodbye” to robot 1. He looks for an entry in his
routing table and notices it exists. The routing table
says he must use robot 2 as next hop towards robot 1.
Robot 3 sends the data packet to robot 2 and robot 2
passes on the message to robot 1 using the route table
again. Finally robot 1 receives the information and
the trial is finished.

6 Conclusions

We have developed an alternative to the original
RoBios API for communicate Eyebot robots. The ma-
jor advantages are the independence of the radio scope



and the use of ports. Tests show the correct operation
of PERA.

We have noticed that the worst problem of our li-
brary is that a packet can be lost with high probabil-
ity using Eyebots. PERA does not guarantee reliable
communication on any of its layers. A place where
message recovery could be provided is the transport
layer, thus providing recovery end to end. But we
think a better place to implement recovery protocols
is at the link layer, because it would accelerate the
recovery due to the high rate of transmission errors of
the Eyebot radio.

The ACKs that are already used at the network
layer in order to detect lost routes could be used also
to detect possible transmission errors. This feature
would discard false positives in the detection of lost
routes, and would accelerate the recovery of lost mes-
sage in case this is the reason for the absence of ACK
reception.

We are also implementing multicast transmission
(one sender and a group of receivers). The addressing
scheme of PERA already incorporates support for this
kind of communication.

References

[1] C. Agüero, V. Matellán, P. de las Heras, “PERA:
Protocolo de Encaminamiento sobre redes Ad-
Hoc”, http://gsyc.escet.urjc.es/pera, 2002.

[2] T. Braunl, “Eyebot Documentation”,
http://www.ee.uwa.edu.au/braunl/eyebot, 2002.

[3] D. Chaparro, R. Rodŕıguez, J.
Pelegŕın, “Encaminamiento Ad-Hoc”,
http://pantuflo.escet.urjc.es/ir-1-2/crp/, 2002.

[4] M. S. Corson, A. Ephremides, “A Distributed
Routing Algorithm for Mobile Wireless Net-
works”, ACM/Baltzer Wireless Networks J.,
1995.

[5] S. R. Das, C. E. Perkins, E. M. Royer, M. K.
Marina, ”Performance Comparison of Two On-
demand Routing Protocols for Ad hoc Networks.”
em IEEE Personal Communications Magazine
special issue on Ad hoc Networking, 2001.

[6] R. Dube, “Signal Stability based Adaptive Rout-
ing (SSA) for Ad-Hoc Mobile Networks”, IEEE
Pers. Commun., 1997.

[7] J. M. Cañas, E. Garćıa, V.
Matellán, “Manual del Robot Eyebot”,

http://gsyc.escet.urjc.es/robotica/manual-eyebot,
2002.

[8] Grupo de Sistemas y Comunicaciones
Universidad Rey Juan Carlos, “Intro-
ducción a las redes de ordenadores”,
http://gsyc.escet.urjc.es/docencia/asignaturas/redes,
2001.

[9] D. B. Johnson, D. A. Maltz, “Dynamic Source
Routing in Ad-Hoc Wireless Networks”, Mobile
Computing, 1996.

[10] S. Murthy, J.J. Garćıa-Luna-Aceves, “An Effi-
cient Routing Protocol for Wireless Networks”,
ACM Mobile Networks and App. J., Special Issue
on Routing in Mobile Communication Networks,
1996.

[11] C. E. Perkins, “Ad Hoc Networking”, Addison-
Wesley, 2001.

[12] C. E. Perkins, E. M. Belding-Royer, S. R. Das,
“Mobile Ad Hoc Networking Working Group
- Internet Draft”, http://www.ietf.org/internet-
drafts/draft-ietf-manet-aodv-11.txt, 2002.

[13] C. E. Perkins, P. Bhagwat, “Highly Dynamic
Destination-Sequenced Distance-Vector Routign
(DSDV) for Mobile Computers”, Comp. Com-
mun, 1994.

[14] RoboCup-Rescue Official Web Page,
http://www.r.cs.kobe-u.ac.jp/robocup-rescue/

[15] E. M. Royer, C. Toh, “A Review of Current Rout-
ing Protocols for Ad-Hoc Movile Wireless Net-
works”, IEEE Personal Communications, 1999.

[16] A. S. Tanenbaum, “Redes de computadoras”,
Prentice Hall, 1997.

[17] C. Toh, “A Novel Distributed Routing Protocol
To Support Ad-Hoc Mobile Computing”, IEEE
15th Annual Int’l. Phoenix Conf. Comp. and
Commun., 1996.


