
Journal of Intelligent and Robotic Systems 32: 93–114, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

93

ABC2 an Agenda Based Multi-Agent Model
for Robots Control and Cooperation

VICENTE MATELLÁN�

Departamento de Ciencias Experimentales e Ingeniería, Universidad Rey Juan Carlos de Madrid,
28933 Móstoles (Madrid), Spain;
e-mail: vmo@gsyc.escet.urjc.es

DANIEL BORRAJO
Departamento de Informática, Universidad Carlos III de Madrid, Avda. de la Universidad, 30.
28911 Leganés (Madrid), Spain;
e-mail: dborrajo@ia.uc3m.es

(Received: 20 June 2000; in final form: 31 October 2000)

Abstract. This paper presents a model for the control of autonomous robots that allows cooper-
ation among them. The control structure is based on a general purpose multi-agent architecture
using a hybrid approach made up by two levels. One level is composed of reactive skills capable
of achieving simple actions by their own. The other one uses an agenda used as an opportunistic
planning mechanism to compound, activate and coordinate the basic skills. This agenda handles
actions both from the internal goals of the robot or from other robots. This two level approach allows
the integration of real-time response of reactive systems needed for robot low-level behavior, with a
classical high level planning component that permits a goal oriented behavior. The paper describes
the architecture itself, and its use in three different domains, including real robots, as well as the
issues arising from its adaptation to the RoboCup simulator domain.

Key words: agenda, control, cooperation, fuzzy, multi-agent, robots.

Abbreviations

ABC2 – Agenda Based Cooperation for Agent’s Behaviors Coordination
ADL – Agent Definition Language
AI – Artificial Intelligence
DAI – Distributed Artificial Intelligence
PRS – Procedural Reasoning System
UC3M – Universidad Carlos III de Madrid

� Vicente Matellán was lecturer at Universidad Carlos III de Madrid during most of the work
reported in this article.

94 V. MATELLÁN AND D. BORRAJO

1. Introduction
The field of cognitive robotics, that is, robotic systems that can make their own
decisions autonomous and intelligently, has evolved from the classic control theory
applied to single robots with little control power, to Artificial Intelligence (AI)
techniques applied to complex multi-robot domains such as RoboCup� (Kitano
et al., 1995). The application of AI techniques transfered the debate on the mer-
its of deliberative AI architectures (symbolic AI, cognitive AI, top-down AI or
knowledge-based AI) versus alternative architectures (behavior-based AI, Artificial
Life, bottom-up AI or reactive AI) to the robotics field. Among the first ones, the
Shakey robot (Nilsson, 1984) is the best known. These systems used a classical
AI view of planning and problem solving, which had, among other problems, the
inability to reason and act on highly dynamic environments on real time. This is
the case of most real-world problems that an autonomous intelligent system faces.

Among the research efforts on the second type of systems, the best known are
the robots created by Brooks (1986) who focused the behavior of autonomous
systems on using pre-defined “ad-hoc” behaviors (Connell, 1990). These architec-
tures have been shown to be very effective on some domains and on specific tasks.
However, more flexibility is strongly needed when designing a general architecture
that requires high-level reasoning working with symbolic information and goals to
be accomplished.

This paper presents a multi-agent architecture, named ABC2 (Agenda Based
Cooperation for Agent’s Behaviors Coordination) (Matellán, 1998), based on pre-
defined skills (reactive component) that each agent composes in an opportunistic
way to achieve an intelligent behavior (cognitive component). An agenda has been
used to keep a list of pending actions, where each action can require (or not) pre-
defined simpler actions. Actions can be inserted into the agenda by other actions, by
events from the environment or by requests received from other robots. Similarly,
actions can be accomplished as a result of the execution of other actions, by other
robots actions, or simply by changes in the world.

This contribution extends this kind of system in two aspects. First, these ideas
cope with highly dynamic and real environments and second, controllers can be
designed using any reasoning paradigm including learned behaviors. This article
presents three different domains where ABC2 has been successfully tested (two
using simulators and one real robots).

The paper is organized as follows. In the next section planning strategies most
commonly used are compared in order to justify the design decision made in ABC2.
Section 3 formalizes the ABC2 model, and its components. Section 4 thoroughly
presents the first implementation based on the model and its application to the
RoboCup challenge. This section also analyzes the results obtained in that compe-
tition. The last section describes an example of the execution of an implementation
of ABC2 model in real robots, focusing specially on the role of the agenda in the
control of the robot actions.

� See http://www.robocup.org for more information about RoboCup competition.

ABC2 ARCHITECTURE 95

2. Planning Strategies

When considering the application of a model for controlling robots to different
tasks than the one it was specifically designed for, the adaptation requires hard
work. This is so because each type of planning scheme is more appropriate to a
type of problem due to its built-in assumptions. Cognitive AI models consider a
plan to be a sequence of actions that have to be executed in order to achieve a goal.
The traditional approaches to the automatic generation of these plans operate under
assumptions such as (Fikes and Nilsson, 1971; Veloso et al., 1995; Penberthy and
Weld, 1992):

− The state of the real world can be formally and correctly observed and defined
prior to the search of a plan.

− The robot is the only agent that can modify the world.
− The robot actions have only the effects specified in its formal definition.

Under these assumptions, the control module (planner) is given a complete de-
scription of the initial state of the world, the potential actions (called operators)
that the robot can perform, and a set of desired goals. The role of the planner will
be to perform a search, usually exponential, expanding a tree of possible operators
combinations to produce the sequence of robot actions (called plan) that leads from
the initial situation to a situation on which the goals are fulfilled. Typically, these
systems produce off-line complete plans. The whole plan is generated considering
only the previously described assumptions.

There are other planning approaches with less strict assumptions, which in-
clude stochastic planners (García-Martínez and Borrajo, 2000), graph-based plan-
ners (Blum and Furst, 1995), or genetic programmed planners (Muslea, 1997).

A different paradigm, reaction, has been widely used in highly dynamical envi-
ronments. This paradigm stands for intelligence resulting from the interaction with
the environment, where the interaction is defined by small behaviors performing
very simple tasks. The interaction in an autonomous robot is defined as a mapping
from its sensors to its actuators. Planning in this context consists on several cycles
of one-step decision making. One classical instance of this type of architectures
is the subsumption architecture, where the key idea is using the world as its best
model (Brooks, 1991). This approach divides the problem into activities, that con-
nect sensing to acting directly. These behaviors must decide by themselves the
moment when they have to act; they are not just subroutines to be invoked by a
central planner but individual behaviors.

ABC2 can be seen as an hybrid architecture made by two levels. The first one
composed by skills that control the robot in a reactive way; and the second one uses
a deliberative approach built as a high-level agenda-based planning mechanism that
combines the skills.

Finally, the multi-agent aspect has also to be considered. The approach taken in
ABC2 has been influenced by different DAI (Distributed Artificial Intelligence) sys-
tems such as the one reported in (Bond and Gasser, 1988), and particularly by the

96 V. MATELLÁN AND D. BORRAJO

Coopera architecture (Sommaruga and Catenazzi, 1996). The cooperation mecha-
nism is based on the Speech Acts theory (Cohen and Perrault, 1986), and a version
of the Contract Net protocol (Smith, 1980) is used to assign tasks. The next section
describes the model in detail.

3. Description of the Model

In this model, an intelligent system, in particular an intelligent autonomous robot,
will be defined as a knowledge structure defined by a set of static and dynamic
attributes. Among the static ones there is the name of the agent (N), the list of
its skills (S), the knowledge about its team-mates names and skills, called yellow-
pages (Y), the current state of the world, defined using a language (L), and the set
of heuristic rules that governs the behavior of the agent (H). So, an agent (A) can
be represented as the tuple:

A = 〈N, S, Y,L,H 〉.
In the same way, given that a team is made up of at least one agent the team of

agents can be represented as 〈N, S, Y,L,H 〉+.
For instance, let us consider a simplified team of robots, made up by two robots,

robot_1, and robot_2. The definition of the first robot static components could
be:

robot_1 = 〈 robot1,
{Go_Ball, Look_for_Ball, . . . , skill1n},
{robot2: Pass, Go_Ball, . . . skill2m},
{ Ball: (32,50), . . . Conceptk: (valuek1 , . . . valueki

),
Attacking, . . . infoj }

{ (Ball, Goalown, . . . , Conceptk)+,
(Attacking, Defending. . . infol)+ },

heuristic-rules 〉
where skill1j (j from 1 to n) represent the n available skills of robot_1. For exam-
ple skill11 may be Go_Ball. Then, the information that robot_1 has about the m

skills of robot_2 is represented, given the names of the skills of that robot (for
instance, Pass). Then the description of the environment is given. This information
is described using the language L, and usually will be organized into structured
information, composed by a classical hierarchy of concepts, such as the Ball, and
its attributes, for example its position; and unstructured information, such as if the
team is attacking or defending. Finally, the set of heuristic rules for controlling the
agenda is given.

Among the dynamic information that defines the current situation of an agent
there is the agenda (Ag) that contains the acts currently under consideration, the
queues of messages (Q) received or pending to be sent, and the information (I)
about the current state of the world, defined using the language L. So, an agent

ABC2 ARCHITECTURE 97

Figure 1. Architecture of the robots.

in a given moment is defined by 〈Ag, I,Q〉, and the situation of the whole team
as 〈A,Ag, I,Q〉+, where A is the name of the agent representing each tuple. This
definition is graphically shown in Figure 1.

In a given instant, the situation of both robots could be defined as:

〈robot1, Ag = { [DO:Go_Ball] },
I = {Ball.position=(20, 90), Attacking = True},
Q = [REQUESTED:Go_Ball, robot2] 〉

〈robot2, Ag = {[act1] . . . [actn]},
I = {obj1.attribute1, ..., objk.attributen},
Q = none 〉

which means that robot_1 has only one act in the agenda. This act is to perform
the skill DO:Go_Ball. The only information that robot_1 has about the elements of
the environment is that the Ball is at distance 20 with angle 90, and that its team is
attacking, which corresponds to the structured and unstructured information given
using language L. Finally, the queue of messages shows that the robot_2 has asked
robot_1 to perform the skill Go_Ball.

3.1. DESCRIPTION OF COMPONENTS

The following description explains in more detail the components of the model
shown in Figure 1:

98 V. MATELLÁN AND D. BORRAJO

Figure 2. Relations among the skills and the agenda.

Skills Set of simple and reactive controllers. These controllers implement pre-
defined behaviors that an individual agent can accomplish. They can be im-
plemented using any type of decision-making mechanism or learned abil-
ity. In particular, for the example described in Section 5, fuzzy controllers
(Zimmermann, 1990) have been used. The main reason for this election was
that fuzzy controllers are very flexible, which makes them easily adaptative.
Besides, fuzzy sets theory is a well-suited paradigm that has shown its effec-
tiveness in many autonomous systems. Also, fuzzy theories are susceptible
to be shared among different agents (Matellán et al., 1996). And finally, we
had the possibility of using previously developed and tested fuzzy reasoning
libraries (Matellán et al., 1995a).
The design of the behaviors has been done heuristically for the examples of
the applications on next sections. This means that the rules have been chosen
by hand. However, many “automatic” methods for designing this type of ro-
bot behaviors can be found in the literature, ranging from the mathematical
methods (Steels, 1990) to neural networks (Maes and Brooks, 1990) or ge-
netic algorithms (Koza, 1991). For instance, good results have been obtained
in previous work using the last method (Matellán et al., 1995b). However,
most of these methods have been designed to learn in well-defined environ-
ments, with few dynamic objects.
The definition of a particular skill (as shown on the top right box of Figure 2)
requires:

− Setting the condition for triggering the controller (named Ready in the
figure) in order to know if the controller can be executed or not. This
condition is equivalent to the requirement in deliberative planning that,

ABC2 ARCHITECTURE 99

in order to apply an operator, its preconditions have to be true in the
state.

− The design and implementation of the controller that performs the de-
sired action (this is represented as the function Execute in the figure),
whose effect is equivalent to the representation of the post-conditions of
classical planning operators.

− Providing a list of skills that can make it “executable”. In the case that
the Ready function of a skill returns a FALSE value, it cannot be im-
mediately executed. In order to make it executable, one has to define
other skills that, after their execution, allow the previous skill to be
executed. This list of skills has been named Needs. This list simpli-
fies the search of potential operators that provides the preconditions in
deliberative planners.

− Establishing the Priority assigned to the behavior. This value can be
used in the heuristic rules to select acts from the agenda and reflects the
“a priori” importance of that skill.

The Agenda The Agenda is a dynamic structure that contains items named acts,
whose name is due to the Speech Acts theory (Cohen and Perrault, 1986).
These acts represent the potential actions that the robot is considering at a
given moment. Five types of acts are considered in ABC2:

DO <skill>, that represent potential skills that the robot can perform by
itself. In the next section, the fundamentals of these behaviors are pre-
sented.

REQUEST <agent> <skill>, to ask another agent to perform a particular
skill.

REQUESTED <skill> <agent>, to indicate that the skill in the argument of
the act has been requested by another robot in order to be performed by
this one.

SUPPLY_INFO <agent> <info>, to point out that some information has to
be sent to another robot.

INFORMED <info> <agent>, to get a piece of information sent by another
robot.

The components of an act (as shown in Figure 2) are:

− The type of the act (DO, REQUESTED, etc.);
− The name of the associated skill;
− The counter Called that indicates the number of acts in the agenda that

require it;
− The counter Time that keeps the time when the act was inserted into the

agenda;

100 V. MATELLÁN AND D. BORRAJO

− The switch Expanded, that indicates if the needs of the associated skill
have been added to the agenda or not;

− The function Evaluate, that indicates what has to be done when the act
is selected (for example, execute its associated skill if the type of the act
is DO).

Section 3.2 explains in more detail how the agenda works.

Heuristics They decide at any time what act to select from the agenda. Fuzzy
rules have been used in the implementations described in this article. We are
currently exploring other types of heuristic representations for comparison
purposes. The input variables of these rules are, among others: the priority of
the skill associated to an act; the time that an act has been in the agenda; the
number of acts that require an act to be evaluated; the information from the
environment; and the type of agent.
The output is the weight of each act in the agenda. Once the acts have been
weighted, the eligible act to be executed is the one with the highest weight. For
example, an heuristic rule could be “if Attacking is True and Distance(Ball) is
Near then Go_Ball.Priority is Increased”. These heuristics can also be used
to purge the agenda of undesired acts.

Yellow Pages Knowledge that an agent has about the other agents. This informa-
tion consists of a table made by the name of its team-mates, and the name of
the skills they can accomplish. These skills will be used in the same way as
its own skills.
A skill can be considered as an abstraction of an action that will be accessible
to other team-mates. In fact, this means that the robot has meta-knowledge
about itself (through its skills definition) and its team-mates (using the yellow
pages).

Information Classical reactive behaviors compute the outputs for the actuators of
an agent directly from the raw numerical data perceived by its sensors. In other
environments, like for instance the RoboCup simulator (Kitano et al., 1995),
the inputs are not numerical data obtained from the sensors, but a mixture
of linguistic and numerical information. In order to be able to handle this
information, a reduced high-level language, named L is used. It allows the
agent to define the inputs of the skills and to keep significant information
about the current state of the world. So, the skills use this language to represent
the information of the robot inputs.

Communication One of the distinctive capabilities of the agents controlled by
ABC2 is their ability to communicate with other agents. In order to be able
to handle the intrinsic complexity of the communication (protocols, queues,
etc.) the agents are given a specialized entity to cope with it.

ABC2 ARCHITECTURE 101

This entity provides the abstraction needed to cope with different communi-
cation environments. The abstraction gives a unique mechanism of communi-
cation of the type:

send(Message, Destination)

The way this procedure is implemented depends on the type of problem. For
example, in a simulator the function is implemented over the TCP/IP tower,
while in a real robot it uses the available communication mechanism. So, in
the RoboCup simulator (Noda, 1995), UDP sockets have been used while in
the real example shown in Section 5 serial port communication has been used.
This abstraction is the lowest level of the cooperation mechanism whose main
component is the Speech Acts previously described.

3.2. CONTROL CYCLE

Previous section describes the components of the control mechanism of the robot.
This one presents the control cycle that controls each agent. This control cycle
mainly consist in the following control algorithm:

Initialize (Agenda)

while Agenda �= ∅
Recursively Remove Acti such as Acti .Called = 0

Actsapplicable = {Acti ∈ Agenda such that Acti .Ready = True }

Repeat ∀Acti ∈ Agenda such that �∈ Actsapplicable loop
if not SkillActi .Expanded then Expand SkillActi

Act ⇐� Select Act from Actsapplicable using Heuristics

Evaluate (Act)

where Agenda is the agenda of the robot, Actsapplicable the subset of the acts con-
tained in the agenda whose associated skill is Ready, Initialize inserts the initial
act into the Agenda and Empty checks if the Agenda is empty or not.

The way this algorithm works is as follows: first the Agenda of each agent has to
be initialized in order to achieve any particular task. This is performed by inserting
an initial act into its agenda. For instance, a DO act with a skill requiring high
attention. This act can be considered as its main goal or its initial goal. Other acts
will be generated as they will be required in order to achieve this initial goal, for
instance as needs of this act (see Figure 2).

Another way acts can be inserted into the agenda, apart from their insertion as
needs of other acts, is directly by the Execute() function of a skill that can indicate
the addition of another act to the agenda.

102 V. MATELLÁN AND D. BORRAJO

Then, the applicable acts of the agenda are selected. This is achieved by consult-
ing the Applicable feature of the act. The way this feature is calculated depends on
the type of act. For example, in a DO act is set from the value of the Ready function
of its associated skill. If a DO act is not applicable, then the Expanded switch of its
skill is checked. If it has not been expanded, its needs are inserted into the agenda
as [DO: <need>] acts. When adding acts to the agenda it checks if the considered
act had been previously added to the agenda by other acts. If the act was already
in the agenda, the counter Called of the act is increased; otherwise, a new act is
added to the agenda.

At the same time that the applicable acts are selected, the acts whose Called
counter is equal to zero (no other act requires them) are removed from the agenda
and the counter Called of all its needs that were in the agenda are decreased. This
is repeated recursively until there is no modification neither in the number of acts
into the agenda nor in the values of the Called counters.

Once the applicable acts have been selected, the domain heuristics are applied
to select the one that will be evaluated. The application of the heuristic rules results
in a selected act. Finally, the selected act is evaluated. If the selected act is a DO act,
it executes the skill associated to that act. If the selected act was a REQUESTED, it
inserts a new DO act� containing the requested skill into the agenda, etc.

This control cycle continues while the agenda contains any act. That is, the
control cycle of the agent exits (and the agent itself) while it has something to
do. If an agent with unlimited life is needed, it is only needed an act DO whose
associated skill has a null Execute controller and a Ready function that will never
be true.

The main advantage of this approach over the other two extremes, delibera-
tion and reaction, is that it can flexibly vary between the two. On the deliberative
extreme, one could always introduce new acts into the agenda, until all acts had
been expanded. Then, one would select one applicable skill and deliberate again,
or execute another skill. On the other extreme, one could always prefer to execute
skills as they become executable, becoming a reactive system. But, here, we have
another alternative that allows us to switch between both extremes becoming more
opportunistic with respect to the the defined heuristics, and the current state of the
agent and the environment.

4. ABC2 in the RoboCup Environment

RoboCup (Kitano et al., 1995) is a challenging competition both of real and simu-
lated robots. The goal is to test architectures that can control a team of robots in a
multi-agent, real-time and noisy environment. In the simulator competition, where
the model was tested, each team was made by eleven players, each one controlled

� This is so in this implementation of ABC2, REQUESTED acts are translated into DO acts, which
means that the agent treats the accepted requests from other agents in the same way that its own
action, but it is being considered if a direct execution of the skill will be more adequate.

ABC2 ARCHITECTURE 103

individually. The robots get unpredictable noisy sensory information in real-time,
and have to take an action each 100 ms. The communication among the members
of the team was unreliable, unsecure, broadcasted (messages from the opponent
team were also received) and with a low-bandwidth.

ABC2 was used directly (without any adaptation apart from the design of the
specific skills) to this environment. Each robot was controlled by its own imple-
mentation of the model, using its own subset of skills, set of heuristic rules and
initial act.

4.1. DEFINITION OF AGENT’S SKILLS

The following is the summarized description of some of the skills used in our team
(Matellán et al., 1998). This is a reduced and simplified version of the skills used
in the competition, provided only to give an overview of the model and the type of
skills to be designed.
− Look_for_Ball:

Ready: Ball position is not known.

Execute: The robot turns 85 degrees right.�

− Go_Ball:

Ready: Ball position is known and the distance to the ball is bigger than 2
meters.

Execute: The robot turns and dashes in the appropriate direction.

− Kick_Goal:

Ready: Distance to ball is less than 2 meters (kickable), opponents goal
direction is known.��

Execute: Kicks at maximum speed (100) towards goal. The position of ob-
stacles in the way towards the goal is considered to calculate the direction.

− Go_Position:

Ready: The player knows its own position and it is not in its initially as-
signed position. Of course, the decision whether the player is in its assigned
position or not has a tolerance to avoid unnecessary movements.

Execute: Go to its initially assigned position.

− Pass:

Ready: Distance to ball is less than 2 meters (kickable). Team-mate position
its known.‡

� In the real implementation there is a controlled randomness that prevents from turning always
in the same direction and avoids alternative turns right-left.

�� Decision of kicking towards goal or not is not considered in the skill.
‡ In the real implementation there are different kinds of Pass skills that allow defensive and

offensive strategies. Also the ability to pass towards vacant spaces has been considered.

104 V. MATELLÁN AND D. BORRAJO

Execute: Kicks towards team-mate position using a calculated strength. The
position of opponents in the way towards the team-mate is considered to
calculate the direction.

− Look_Ball_at_Position:

Ready: The player is in its assigned position, ball position is known and it is
not looking straight towards ball.

Execute: Turns towards ball.

− Come_Out:

Ready: Ball position is known and the distance to it lower than 15 meters.

Execute: Turns and dashes towards the ball.�

− Clear:

Ready: Ball distance is less than 2 meters (kickable).

Execute: Kicks the ball forward avoiding opponents.

− Look_for_Team_mate:

Ready: Always.

Execute: Turns 90 degrees towards right.

− Advance_towards_Goal:

Ready: Ball distance is lower than 2 meters (kickable).

Execute: Kicks the ball towards goal and dashes in that direction.��

− Win_Match:

Ready: The time is over.

Execute: The result of the game is written and player program ends.

These skills may have been heuristically designed or may have been learned.
Both mechanisms for designing can be mixed in the same agent with no restriction.
In the real implementation, skills are C++ classes derived from a base class. So, a
learned behavior has to be implemented in this way, overloading functions Ready
and Execute of the class.

4.2. DEFINITION OF THE PLAYERS

Once the skills have been defined, the players are designed. One player consists,
as it was defined in Section 3.1, in the definition of its skills, the relations among
them, the heuristics, and an initialization. In order to make the definition of agents
easier in different domains, ABC2 provides an Agents Definition Language (ADL).

The definition of any player using ADL is divided into the following parts:
� If the ball is moving, a prediction is used of to where it is going to be.

�� The full implementation considers other skills implementing different advanced strategies.

ABC2 ARCHITECTURE 105

1. Initial parameters.
2. Skills and needs declaration.
3. Initial skill.
4. Information about other agents.
5. The definition of the heuristics.

In order to show how ADL is used, let us present the configuration of an agent
of the RoboCup domain. For instance, a simple goal keeper (goalie). Its desired
behavior will be to stay in its goal, remain in its position looking at the ball and try
to catch the ball if it approaches closer than 15 meters. Then, if he catches the ball
it will try to clear it. The definition of this player will be made as follows:

* Initial parameters
-50 0 0 3 goal keeper
* Skills
Go_Position 0.7
Look_for_Ball 0.6
Keep_Looking_at_Ball 0.75 Go_Position Look_for_Ball
Get_Out 0.8 Keep_Looking_at_Ball
Kick_off 0.9 Get_Out
Win_Match 1 Kick_off
* Initial Skill
Win_Match
* Skills of team-mates
Left_Defender: Kick_off, Pass, Receive, ...
...
* Heuristic definition
goalie.heuristics
* End_of_File

Lines starting by ∗ are comments and they separate the different parts. The
first part sets the initial position in the field: (X,Y) coordinates, orientation and
tolerance in that position, as well as the name of the player, where its position
(X = −50, Y = 0) corresponds to the center of its own goal.

Then, the skills that the robot can use are defined. For each skill an initial weight
(Priority, in Figure 2) is set, as well as its list of needs. For instance, the skill
Keep_Looking_at_Ball has two needs Go_Position and Look_for_Ball and an
initial weight of 0.75. Every need of a skill has to be previously defined, and it has
to correspond with an appropriate implementation (providing the Ready, Execute,
etc. functions).

Once the skills of the robot have been defined, it is the turn of the heuristics. In
the version of ABC2 used in the RoboCup fuzzy rules were used to implement the
heuristics. In order to make them easily adjustable, the heuristics were defined in a
separate and human-readable format (ASCII file). The definition of the heuristic

106 V. MATELLÁN AND D. BORRAJO

rules means the definition of the inputs and outputs of the rules, and also the
specification of the heuristic rules themselves.

In the implementation used in the RoboCup, first the name of the inputs are
given, for instance DB (Distance_to_Ball). Then the linguistic labels (such as Very
Near, Near, Far and Very Far) used to qualify that variable are defined. The defini-
tion of these labels is made by specifying their membership functions (Zadeh, 1973)
as trapezoids. For example, Very Near (VN) is defined by −1, 0, 2, 2.1 in the
following example. These four values correspond to the abscissas coordinates of a
trapezoid of height 1 defined over the range of the input DB. The range of the input
(Distance_to_Ball) obviously should be positive, since it is a distance, however the
first vertex is negative (−1) to put the slope in the negative area, so the height of
the trapezoid would be 1 (that is, crisp V N = 1) when Distance_to_Ball would be
zero.

Then, the outputs are defined in the same way, that is, by giving the four abscis-
sas coordinates of a trapezoid. Output variables will represent the modification of
the Priority of the different skills. For example, the Priority of the skill GO (Getting
Out of its goal) can be (Decreased, kept Equal or Increased).

Finally, the heuristic rules themselves are defined as first order rules made by
a condition (that can use the fuzzy operator AND, written as &), the implication
symbol =>, and the result (where the fuzzy operator AND can also be used).

The following statement corresponds to a small part of the definition of the
heuristics for the goalie (goalie.heuristics), and the definitions previously de-
scribed are shown all together:

* Inputs
{ DB
VN -1 0 2 2.1
N 0 2 10 15
F 8 15 20 25
VF 22 30 120 130 }
...
* Outputs
{ GO
D -2 -1.2 -0.8 0
E -0.5 -0.2 0.2 0.5
I 2 1.2 0.8 0 }
...
* Rules
{
if DB is VF => GO is D
if DB is F & DG is ... => GO is D &
... }

The design of the heuristics have been made heuristically attending to the expe-
rience in previous matches, but learning methods could be used to improve them,

ABC2 ARCHITECTURE 107

because they are defined in a high level language. We will explore that possibility
in future work.

The real behavior implemented for the goalie used some other skills (trying for
example, not only to clear the ball, but to pass it towards a team-mate, etc.) and
more sophisticated heuristics.

4.3. RESULTS

The first implementation of the ABC2 model was tested in the RoboCup’97 simula-
tion track. There were 33 participants in this track (U.S. = 8, Europe = 8, Australia
= 2, Japan = 15). Teams were organized in groups of 4 teams. Our team team
lost (1–9) its first match against CMUnited, team presented by Carnegie Mellon
University (USA). It beat RMKnights (10–0), the team presented by the Royal
Melbourne Institute of Technology (Australia), and lost (0–8) against Niken, team
presented by Kinki University (Japan). In summary, two matches lost, one won, 17
goals received and 11 scored.

This was the first RoboCup competition, and some considerations have to be
taken into account when evaluating matches results. The first one is that if a team
is better than another one in a particular task, then the difference of goals in a
match may be really large (results in other groups were in the order of thirty goals
of difference between the two teams). This is due to the fact that the competition
was held on a simulator, which enforces these goal differences. Most of the time,
one special issue (good or bad) eclipses the rest of the characteristics of the team.
So, an analysis of the performance of a team should try to focus on the issues that
made a team better and not in the difference of goals.

In our case, this was also our first entry into this kind of competition, and we
realized that some of our skills were not well tuned. ABC2 intends to provide
a framework for the coordination of robot skills, but it does not deal with the
skills themselves. For example, the prediction of the ball movements from the
information received from the simulator can be considered just a mathematical
issue. However, this is a key element when evaluating a player performance. For
instance, the goal-keeper actions heavily depend on the ball movement predic-
tion. Instead, we decided to focus on implementing the action selection mecha-
nism proposed in ABC2, than on implementing a perfect ball movement predic-
tion. In the same way, for this particular issue we have preferred to try learning
techniques (Fernández et al., 1999), than just developing mathematical stuff for
improving this behavior.

The second one is that the competition itself is not the overall goal of RoboSoc-
cer. The main goal of RoboSoccer is to show that different control architectures and
models can be successfully applied to a highly uncertain and dynamic environment.
Therefore, we did not focus on the performance of the behaviors, but on the use of
the ABC2 model. From this point of view, we succeeded because ABC2 could be
used without requiring any modification.

108 V. MATELLÁN AND D. BORRAJO

5. Experiments with Real Robots

Let us consider an example where two robots have to push a box at the same
time from the same side. In order to simplify the problem, we defined two points
where the robots have to be aligned to adequately push. This experiment has been
tested both in a simulated environment (see Figure 3), and also using two real
robots (see Figure 4). In the simulated one we have used the simulator SimDAI
(Sommaruga et al., 1996) built in our lab. This simulator lets users define indepen-
dent processes implementing each one of the agents. In the figure two windows

Figure 3. An example in a simulated environment.

Figure 4. The real environment.

ABC2 ARCHITECTURE 109

for monitoring both of the robots are shown (in the left), as well as two windows to
monitor how the system is working (the upper right window shows a detail of the
simulated environment and the lower right the whole system).

The real robots we have used are Khepera micro-robots (Mondada et al., 1993).
These robots have only infrared sensors, which makes difficult getting information
about the object to be pushed. In order to make the alignment points reachable to
the robots, these points correspond with two lights placed inside the box to push in
the real environment of Figure 4. A skill makes the robot push when it is aligned
(Push_Box). Another forces it to be aligned (Get_Aligned). A third skill looks for
the alignment point (Look_for_Box), and the fourth one asks the other robot for
getting aligned (Get_Partner).

Once the skills of the robots have been designed (in this example only the four
skills enumerated in the previous paragraph), the heuristics have to be defined. Let
us suppose that a simple heuristic is settled up as: “Select from the agenda the act
whose Priority value is the highest from the ones that are Ready”. Let us also sup-
pose that the information that the robot has about the world is the raw data received
by its sensors (that will be translated into definitions about the distance to the ob-
ject, the angle, the obstacles, etc.) and the information about whether its team-mate
is aligned or not, that will be received as INFORMED acts from its team-mate.

In order to achieve the task of having the robots push the box, they should be
initialized. This is performed by inserting the act [DO: Push_Box] into the agenda.
Then, the applicable acts are selected. This is the situation reflected in Figure 2
where the act [DO: Push_Box] was not applicable and it has been expanded by
inserting the acts [DO: Get_Aligned] and [DO: Get_Partner] into the agenda.

The execution of the skill Get_Partner may result in the insertion in the agenda
of an act such as [REQUEST: RobotB, Get_Aligned]. In order to know what
skills other robots can perform, it consults its Yellow Pages which describe for
the rest of agents what skills they can execute. The evaluation of this act would
result in sending this request to the other robot. The treatment of the other types
of acts is similar. Only the Evaluate() method (see Figure 1) of these acts is dif-
ferent. For instance, if the act [REQUESTED: Get_Aligned, RobotA] is evaluated
by the RobotB, it would produce the insertion of the act [DO:Get_Aligned] in its
agenda.�

In a similar way, the evaluation of the skill Get_Aligned would cause the
insertion of a [SUPPLY_INFO: RobotA, Aligned] act into the agenda. The evalu-
ation of this one will generate an act with the information: [INFORMED: Aligned,
RobotB] into the agenda of the first robot, and its evaluation in toggling the predi-
cate Partner_Aligned. When the two robots realize that they are aligned and get
the information that their partner also is, they can push together. In a similar way
they can handle the amount of time that they have to push, the strength to apply,
etc.

� Or not, if the heuristics of the second robot decide, for example, that acts containing requests
from RobotA are discarded.

110 V. MATELLÁN AND D. BORRAJO

6. Related Work

Section 2 introduced the two classic approaches to robot control: deliberative and
reactive. ABC2 was defined there as an hybrid architecture based on opportunistic
planning. The characteristics of these approaches can be summarized as in Table I.

Hybrid architectures intend to combine reactive and deliberative control, and
usually consist of three components: a reactive layer, a planner, and a layer that
links the other two. Well known examples of this kind of architecture are AuRA
(Arkin and Balch, 1997), which integrates a A∗ planner with schema-based con-
trollers (Arkin, 1989), and PRS (Procedural Reasoning System) (Georgeff and Lan-
sky, 1987) based on least commitment via plan elaboration postponement.

Opportunistic architectures (as ABC2) are a subset of the hybrid architectures
that take its name from Barbara Hayes-Roth approach to hybrid control (Hayes-
Roth, 1992). The agent architecture on her system was also made up by three
components: an event-triggered reactive level, an strategic planner, and a control
process in charge of matching triggered actions with the generated plan. A similar
architecture is used in O-Plan (Currie and Tate, 1991) where the term “agent” is
used to name each of the three modules of the system.

A closer evolution of these ideas, from the ABC2 view point, are RAPs (Reactive
Action Packages) proposed by Firby (1996). RAPs were designed to allow the
reactive execution of symbolic plans. In this way, each RAP defines different alter-
natives of execution depending on the environment, and an agenda is used to select
the next action to execute. Another approach, also close to ABC2, is the TCA (Task
Control Architecture) by Simmons et al. (1997), which integrates symbolic plans
with real-time restrictions as well as reactive behaviors triggered as exceptions.
Both architectures, RAP and TCA, use similar approaches to the hybrid control
of robots to the one used in ABC2. However, none of them takes into account the
multi-agent problems that are one of the key elements, and the most significant
contribution of the ABC2 architecture.

Once the foundations of ABC2 have been presented, the remaining question to
clearly situate ABC2 in the robotics control literature is to determinate the types of
robotic problems for which each control method is more appropriate. Table II clas-
sifies (+ for the best, − for the worst, and ∼ for intermediate) previous planning
alternatives according to some features of robotics problems.

Table I. Summary of planning architectures

Model Representation Assumptions Goals

Deliberative AI First order logic Static world Flexible, explicit

Opportunistic planning Propositions, Skills Pre-planned actions Flexible, implicit

Reactive planning No world model Markov Fixed, implicit

ABC2 ARCHITECTURE 111

Table II. Relation among planning approaches and problem features

Problem Feature Deliberative Reactive Opportunistic

TYPE OF ENVIRONMENT

Uncertainty in Operators − + ∼
Uncertainty in Information ∼ − +
Explicit Goals + − ∼
Representation of State + − ∼
TIME REQUIREMENTS

Speed − + ∼
Dynamic changes in environment − ∼ +
Design effort + − ∼
MULTI-AGENT CAPABILITIES

Communication abilities ∼ − +
Coordination − ∼ +
Cooperation + − +

These features can be classified into three main groups: the type of environment,
time requirements and the number of agents involved. The type of environment
includes both the characteristics of the environment itself (if it is structured, how
dynamic it is, etc.) and the relevant features the architecture is based on. It is clear
that in highly dynamic environments (where the assumption that the agent is the
only one that can modify the environment does not hold) deliberative planners are
not useful. They keep replanning continuously. It is also well known that reactive
systems, where there is no abstract representation of the world, neither of the goals,
can be hardly used in high level tasks.

Another important feature to be considered is the design effort needed to adapt
the system to a specific environment. Deliberative systems use high level repre-
sentation (operators, predicates, etc.) and they are easily adapted. On the other
hand, reactive systems are built as dedicated processes and are designed “ad hoc”
for each specific application. This means that a reactive system usually has to be
completely rebuilt for every application. Opportunistic systems, such as ABC2, are
in the middle. Skills are designed for specific tasks but the way they are combined
can be easily adapted to different domains. Also, skills themselves can be reused.

With respect to time requirements, if the tasks to accomplish have to be decided
in milliseconds (for instance to turn in front of an obstacle) the system can not
perform a huge search. So, most deliberative AI planners are discarded in “real-
time” environments. On the other hand, if the time is not critical, deliberative
planners are able to find a better solution than the reactive ones, that may not leave
from local minima. Of course, opportunistic planning also has its problems, most

112 V. MATELLÁN AND D. BORRAJO

of them based in the fact that skills concatenation is fixed. This allows very fast
search for a solution, but there is no way to look for a new concatenation if the
fixed one can not be applied.

Finally, evaluating the influence of multi-agent domains means establishing the
degree of cooperation among the agents. A first level is communication, where
agents only share information. In this level agents usually need to share a language
(which implies internal representation) to exchange information. The second level
is coordination, which means that agents actions are executed without interfer-
ences; that is, one agent actions do not block or invalidate other agent actions. This
coordination can be achieved using explicit or implicit communication (reactive
systems). The third level implies that the actions of the agents are organized in
order to maximize the performance of the whole group and usually requires shared
goals, explicit coordination and communication.

According to Table II, opportunistic planning would be the most appropriate one
to be used in the three different domains presented in this paper, where there are
at least two agents: two simulated robots in the first domain; two real robots in the
second; and eleven players in the RoboCup environment. Also, these environments
are dynamic and unpredictable.

7. Conclusions and Further Work

The experiment using real robots was designed first in the simulator, where it was
easier to debug the skills, and then they were used in the real robots. We used the
same skills in both environments (except for slight differences in the treatment of
the sensorial information). This meant that the architecture and algorithms were
general enough that they could easily be applied and parameterized to different
environments. Of course, in both environments the robots were able to push the
box cooperatively. (you can reach some demos at http://gsyc.escet.urjc.es/
∼vmo/videos).

Summarizing, in this paper we have described the ABC2 model for robots con-
trol and cooperation. Its fundamentals have been explained and also the theoretical
principles that have influenced it. Then, two applications have been presented in
order to show how the system works in different domains solving different robotic
tasks. The experiments have shown that this architecture is well suited to domains
where there is a need of great flexibility in the accomplishment of the skills, that
is, environments where opportunistic planning can be used. Besides, it allows an
intuitive method to deal with cooperation among agents by letting agents define
their own skills, and the rest of the group having knowledge of them. We have
also shown how this architecture adapts to different environments by the definition
of the particular skills, the relation among them and the heuristics to control their
execution. Preliminary results show that the model is also suitable for real robots
applications: it is fast enough, easily traceable, and it can be first designed in a
simulator and then moved into the real platform.

ABC2 ARCHITECTURE 113

We are currently studying how to improve some of the basic skills, such as
intercepting a moving ball. We are taking two approaches, the first one is using
numeric prediction about the robot moments (to know its position at any time), the
ball moments (to predict its position), etc. The second approach consists of using
reinforcement learning techniques (Fernández et al., 1999) to acquire the behavior
of primitive skills.

References

Arkin, R. C.: Motor schema based mobile robot navigation, J. Robotics Res. 8(4) (1989), 92–112.
Arkin, R. C. and Balch, T. R.: AuRA: principles and practice in review, J. Experimental and

Theoretical Artificial Intelligence 9(2) (1997).
Blum, A. L. and Furst, M. L.: Fast planning through planning graph analysis, in: C. S. Mellish

(ed.), Proceedings of the 14th International Joint Conference on Artificial Intelligence, IJCAI-95,
Vol. 2, Montreal (Canada), 1995, pp. 1636–1642.

Bond, A. H. and Gasser, L.: Readings in Distributed Artificial Intelligence, Morgan Kaufmann, 1988.
Brooks, R. A.: A roboust layered control system for a mobile robot, IEEE J. Robotics Automat.

RA-2(1) (1986), 14–23.
Brooks, R. A.: Intelligence without representation, Artificial Intelligence 47 (1991), 139–159.
Cohen, P. R. and Perrault, C. R.: Elements of a plan-based theory of speech acts, Cognitive Sci.

RA-2(3) (1986), 177–212.
Connell, J. H.: Minimalist Mobile Robotics: A Colony-style Architecture for a Mobile Robot,

Academic Press, Cambridge, MA, 1990.
Currie, K. and Tate, A.: O-plan: The open planning architecture, Artificial Intelligence 52(1) (1991),

49–86.
Fernández, F., Borrajo, D., and Matellán, V.: VQQL: A model to generalize in reinforcement

learning, in: Proceedings of the European Conference on Planning, Durham (UK), 1999,
pp. 385–387.

Fikes, R. E. and Nilsson, N. J.: STRIPS: A new approach to the application of theorem proving to
problem solving, Artificial Intelligence 2 (1971), 189–208.

Firby, J. R.: Modularity issues in reactive planning, in: Proceedings of the Third International
Conference on AI Planning Systems, Edinburgh (UK), 1996, pp. 78–85.

García-Martínez, R. and Borrajo, D.: An integrated approach of learning, planning, and execution,
J. Intelligent Robotic Systems 29(1) (2000), 47–78.

Georgeff, M. P. and Lansky, A. L.: Reactive reasoning and planning, in: Proceedings of AAAI-87
Sixth National Conference on Artificial Intelligence, Seattle, WA (USA), 1987, pp. 677–680.

Hayes-Roth, B.: Opportunistic control of action in intelligent agents, IEEE Trans. Systems, Man,
Cybernet. 23(6) (1992), 1575–1586.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., and Osawa, E.: Robocup: The robot world cup
initiative, in: Proceedings of the IJCAI-95 Workshop on Entertainment and AI/Life, 1995.

Koza, J. R.: Evolving emergent wall following robotic behavior using the genetic programming para-
digm, in: F. Varela and P. Bourgine (eds), Toward a Practice of Autonomus Systems. Proceedings
of the First European Conference on Artificial Life, Cambridge, MA, 1991, pp. 110–119.

Maes, P. and Brooks, R.: Learning to coordinate behaviors, in: Proccedings of the Eighth National
Conference on Artificial Intelligence, San Mateo, CA, 1990, pp. 796–802.

Matellán, V.: ABC2: An architecture for intelligent autonomous systems, PhD Thesis, Dept.
Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid, 1998.

Matellán, V., Borrajo, D., and Fernández, C.: Using ABC2 in the RoboCup domain, in: H. Kitano
(ed.), RoboCup-97: Robot Soccer World Cup I, Lecture Notes in Artificial Intelligence, 1998,
pp. 475–483.

114 V. MATELLÁN AND D. BORRAJO

Matellán, V., Molina, J. M., and Fernández, C.: Fusion of fuzzy behaviors for autonomous robots,
in: Proceedings of the Third International Symposium on Intelligent Robotic Systems, Pisa, Italy,
1995, pp. 157–164.

Matellán, V., Molina, J. M., and Fernández, C.: Learning fuzzy behaviors for autonomous robots, in:
Fourth European Workshop on Learning Robots, Karlsruhe, Germany, 1995, pp. 45–50.

Matellán, V., Molina, J. M., and Sommaruga, L.: Fuzzy cooperation of autonomous robots, in: Pro-
ceedings of the Fourth International Symposium on Intelligent Robotic Systems, Lisboa, Portugal,
1996.

Mondada, F., Franzi, E., and Ienne, P.: Mobile robot miniaturisation: A tool for investigation in contr
ol algorithms, in: Proceedings of the Third International Symposium on Experimental Robotics,
Kyoto, Japan, 1993.

Muslea, I.: SINERGY: A linear planner based on genetic programming, in: Sam Steel (ed.), Recent
Advances in AI Planning. 4th European Conference on Planning, ECP’97, Toulouse, France,
1997, pp. 312–324.

Nilsson, N. J.: Shakey the robot, Technical Report 323, SRI A.I. Center, 1984.
Noda, I.: Soccer server: A simulator of RoboCup, in: Proceedings of AI Symposium’95, 1995.
Penberthy, J. S. and Weld, D. S.: UCPOP: A sound, complete, partial order planner for ADL, in:

Proceedings of KR-92, 1992, pp. 103–114.
Simmons, R., Goodwin, R., Zita, K., Koening, S., and O’Sullivan, J.: A layered architecture for

office delivery robots, in: L. W. Johnson (ed.), Proceedings of First International Conference on
Autonomous Agents, Marina del Rey, California (USA), 1997, pp. 245–252.

Smith, R. G.: The contract net protocol: High-level communication and control in a distributed
problem solver, IEEE Trans. Comput. C-29(12) (1980), 1104–1113.

Sommaruga, L. and Catenazzi, N.: From practice to theory in designing autonomous agents, in: First
Australian Workshop on Distributed Artificial Intelligence, Lectures Notes in Artif. Intell. 1087,
Springer-Verlag, 1996, pp. 130–143.

Sommaruga, L., Merino, I., Matellán, V., and Molina, J. M.: A distributed simulator for intelligent au-
tonomous robots, in: Proceedings of the Fourth International Symposium on Intelligent Robotic
Systems, Lisbon (Portugal), 1996, pp. 393–399.

Steels, L.: Cooperation between distributed agents through self-organization, in: Jean-Pierre Muller
(ed.), Descentralized A.I., Elsevier Science, 1990.

Veloso, M., Carbonell, J., Pérez, A., Borrajo, D., Fink, E., and Blythe, J.: Integrating planning and
learning: The PRODIGY architecture, J. Experiment. Theoret. Artif. Intell. 7 (1995), 81–120.

Zadeh, L. A.: Outline of a new approach to the analysis of complex systems and decision processes,
IEEE Trans. Systems, Man, Cybernet. 1 (1973).

Zimmermann, H.-J.: Fuzzy Sets. Theory and its Application, Kluwer Acad. Publ., Boston, MA, 1990.

