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Abstract. This paper presents a visual based localization mechanism
for a legged robot in indoor office environments. Our proposal is a prob-
abilistic approach which uses partially observable Markov decision pro-
cesses. We use a precompiled topological map where natural landmarks
like doors or ceiling lights are recognized by the robot using its on-board
camera. Experiments have been conducted using the AIBO Sony robotic
dog showing that it is able to deal with noisy sensors like vision and to
approximate world models representing indoor office environments. The
major contributions of this work is the use of an active vision as the main
input and localization in not-engineered environments.

1 Introduction

One of the basic tools for mobile robot operations is the localization capability
[6]. It can be defined as the ability of a robot to determine its position in a map
using its own sensors. Many works [13] have been developed to estimate the
robot location as robot behavior may depend on its position inside the world.

Most of these algorithms, i.e. [11],have been designed for robots equipped
with wheels, where locally accurate odometric information can be achieved and
360o sensory information is available. These requirement makes these meth-
ods unusable in legged robots. The solution we present is intended to solve the
problem for a legged robot were odometric information is not reliable, even lo-
cally, and 360o sensory information is not available. This typoe of information
from sonar or laser sensors is easier to process than camera images, available in
our robot. The camera swinging in legged robots don’t let a continuous image
processing, making unusable the majority of the wheeled robot techniques for
navigation, for instance.

In the literature, some works face this problem using vision as main sen-
sor [3],[2] and [14], but most of them make their experiments in reduced and
engineered environment (that is, placing ad-hoc landmarks or active beacons),
mainly in the Robocup four legged league. In contrast, our work has been tested
in a large office environment using natural pre-existing landmarks (doors, ceiling
lights, etc). In addition, most of the approaches using vision as the main sensor
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for localization are passive, i.e. neither the sensor position, nor orientation are
controlled. Our approach is active, as long as it commands the sensor orientation
to get the information we need from the environment.

Another key difference with previous works is that our approximation is
topological and most of the previously works use a metric approach. The office
environment has been divided into states, where the set of nodes is built depend-
ing on the observations that can be obtained in each place of this environment
(flat corridors and foyers ). Others works using topological localization are, for
instance [10], but again, these approaches are used in wheeled robots, where the
information needed for applying these techniques are not available.

Our work is based on Partially Observable Markov Decision Processes [3].
We calculate a probability density (belief) over the entire states space (nodes of
the topological map). These technique is also used in many other works as [1],
[4] and [9], but using ultrasonic or infrared sensors to determine the obstacles
around the robot, and using available odometry information. In [7], a markovian
vision-based method is used, but the information extracted from the images are
histograms and scale-invariant (SIFT) features [8] that are calculated from a
wide set of image obtained in each map location. Our approach do not need
previously taken images, only a 2D map where the landmarks needed for our
model are displayed.

There are other approaches which use sampling algorithms for localization. In
[12] Monte Carlo approximation is used, but in very controlled scenarios, and in
[5] it has been reported that this technique is not effective in noisy environments
as ours. Once again, these works have been tested in reduced and engineered
environments (RoboCup mainly).

Summarizing, the major contributions of this paper are three:

1. The development of a probabilistic localization technique for legged robots.
It has been tested in large environments. Other works previously cited us-
ing same robots are mainly devoted to small engineered spaces (mainly the
Robocup playground).

2. The development of a topological framework for navigation in not-engineered
indoor environments. Majority of works on legged robots localization has
focused on metric localization in engineered environments.

3. The use of the robot on-board camera as the main sensor for existing land-
marks (doors, ceiling lights, etc.) detection in natural indoor scenarios, and
the control of the position of the camera.

Our work has been developed in an AIBO ERS7 robot. This robot is a
completely autonomous robot which incorporates an embedded MIPS processor
running at 576MHz, and 64MB of main memory. It gets information from the
environment through a 350K-pixel color camera and 2 infrared sensors. AIBO
locomotion main characteristic is its dog aspect with four legs.

The remainder of this paper is organized as follows: in section 2 we make a
brief review of the Markov Localization technique used. In section 3 we describe
our model and its components in detail. In section 4 the experiments and results



are shown. Finally, we expose some conclusions and envisioned improvements in
section 5.

2 Markovian localization framework

Localization based on indirect information provided by the robot sensors (sonar,
laser, etc.) has been successfully integrated in the probabilistic framework and
has exhibited good results [13]. In particular, sampling methods that speed up
the estimation[3] are currently the most popular ones [11].

In our work, we have used a partially observable Markov decision processes
(POMDP) where a probability distribution Bel, over all the possible locations
S = {s1, s2, ...} is maintained. Belt(S = s) represents the belief of being in state
s at time t. Depending on the knowledge about the initial position of the robot
Bel0(S), the initial state will be uniformly distributed, if the position is not
known. If the position is known, the distribution wil be centered in the initial
state.

The belief Bel actualization is divided in two atomic steps:
Movement step. Robot actions are modelled by the probability p(s′|s, a)

(action model). This is the probability of reaching state s′ if an action a is
executed at state s. To obtain the a priori belief for the whole set of states
Belt(S′) bayesian updating is assumed. When an action is executed we apply:

Belt(s′) =
∑
s∈S

p(s′|s, a) · Belt−1(s),∀s′ ∈ S (1)

Observation step. To calculate the corrected belief Belt(S) we take p(o|s)
(sensor model) as the probability of getting the observation o being in the state
s and we operate, as it is described in [9]. When a new independent observation
is obtained the belief is updated using (2).

Belt(s) = p(o|s) · Belt(s′),∀s, s′ ∈ S (2)

3 Our Model

Summarizing, our localization method needs three components to be described,
and these will be defined in more detail in this section:

1. The map and how it is translated to a set of states.
2. A set of actions that the robot can perform and their probabilistic action

model related to states p(s′|s, a)
3. A set of observations the the robot perceives from the environment, and its

probabilistic model related to states p(o|s)



3.1 The state space

We name possible locations of the robot as “states”. These states are defined over
an indoor office environment (see Fig. 1) made up by corridors (represented in
the set of nodes as circles) and rooms (represented as boxes). Nodes are defined
as places with similar sensory characteristics.

Once the set of nodes has been defined, each node has been divided in four
different states, representing the same robot position with four orientations:
north, east, south, and west.

Fig. 1. The set of states is built from the map and its node decomposition

3.2 Action model

The action primitives we have implemented in this work are: to turn 90o on the
left a{TL}, to turn 90o on the right a{TR}and go forward a{F} until the next state
with the same orientation is reached.

When the robot executes an action primitive, i.e. when the robot moves, it
updates the belief as it is shown in (3). The action model defines p(s′|s, a) as
the probability of to reach state s′, starting at state s and executing the action
a:

p(s′|s, a),∀s ∈ S,∀a ∈ A = {a{F}, a{TL}, a{TR}} (3)

This probability p(s′|s, a) will represent our action model and it is calculated
a priori, depending on the possible action the robot can perform in that state
space.



3.3 Sensor Model

Our sensor model take three types of sensations from the image taken by the
robot’s camera:

Depth. The main target for this observation is measure how far the robot is
from the wall when it is orientated to the end of the corridor. For this purpose
we detect the number of ceiling lights that the robot perceive. If the number of
ceiling lights is high, the robot is far from the end. If this measure is low, the
robot is near to the end. In Fig. 3.3 we can see the original image and the image
with the ceiling lights and doors detected.

Fig. 2. Image information extraction results. Detecting 6 ceiling lights and 8 doors

Doors. Using a color filter, the robot is able to count the number of doors
it can observe ahead.

Near landmark. This observation give us information about which land-
marks are around the robot. We define landmarks as the doors or walls that are
situated in the right, left and front side of robot.

Once the data is collected, we apply the equation (2) to correct the belief.

Belsubsequent(s) = p(o|s) · Belprevious(s),∀s ∈ S (4)

4 Experiments

We have made several experiments in a corridor of our office environment in a
normal daily work. In Fig. 3.3, we can see the corridor that we have used for the
experiment and how we have divided it into nodes. Afterwards we have divided
the set of nodes into states. This office environment is very symmetric and that
is why this scenario entrails much more difficulty for the localization system.

For the experimental results, we have used the error function shown in
equation (5), where statehigh denotes the state with the greatest belief and
statecurrent is the robot actual position. The distance is measured as the num-
ber of steps needed to reach one state from another.

error = ||prob(statehigh − prob(statecurrent))) ·
·distance(statehigh, statecurrent)|| (5)



4.1 Ability to recover of an action error

In the first experiment we want to verify if the system is robust enough to cope
with action errors. The system must be able to detect when the movement was
wrong using its sensors, and recover from this situation.

For this purpose, we have situated the robot in state 15 and we ordered it
to go forward along the corridor. The robot knows its initial position, in other
words, the probability distribution is concentrated in the state 15.

Bel0(s15) = 1

Bel0(si) = 0,∀si ∈ S, si 6= s15

We commanded the robot to perform the actions secuentially. Some of these
actions did not execute correctly. Although in the movement step the belief is
changed in a wrong way, in the observation step the belief is corrected due to
the information obtained from the environment in all the experiments.

4.2 Localization speed

In this experiment the robot does not know its starting position, so the first time
the location probability distribution is uniform.

Bel0(si) =
1
|S|

,∀si ∈ S (6)

This experiment was realized with a lot of sensor noise because there were a
lot of people walking along the corridor. Despite this difficulty, the robot is able
to be localized with a small error in a few movements and can recovery to sensor
error quickly, as we see in Fig. 3(a)-3(d).

In Fig. 3(a) the robot starts at node one and the distribution (painted in
green) is uniform along all the nodes. For this explanation we will talk about
node instead of states, which is actually what we use in our model, to simplify
this explanation. So, a node will be padded in green depending on the belief of
the state situated in this node, orientated on the right. When the robot moves
forward it reach to the node 2 (Fig. 3(b)) and it takes data from its sensors. With
this data the model evolves and the probability is concentrated in state 2 and 17,
because these two states have almost the same observation properties. The robot
goes forward, but an error occurs and the robot reaches node 4, instead of node
3. This anomaly is observed in the model and it is corrected in the observation
phase, as we see in Fig. 3(c). In the last movement the robot reaches the node 5
and then the simetry is broken, concentrating the probability in the node 5, as
we see in Fig. 3(d).



(a) Initial state for the
experiment.

(b) After movement,
there is a couple of
states where the robot
could be.

(c) In the next step, the
robot skips the node 3.

(d) In this step the sime-
try is broken.

Fig. 3. Experiment done in a corridor. The amount of green in each state represent
the belief in it.

5 Conclusions

In this article we have presented the preliminary results for the localization of
legged AIBO robots in not-engineered environments, using the vision as an active
input sensor. We have shown that the robot is able to localize in real time itself
even in environments with noise produced by the human activity in a real office.
It deal with uncertainly in its action and uses perceived natural landmarks of
the environment as the main sensor input.

The data obtained from sensors, mainly the camera, is discriminant enough
and let a fast convergence from an initial unknown state, where the belief over
the set of states has been distributed uniformly. Also we have shown that the
robot can overcome action failures while localizing, and it recovers from them in
a efficient way.

The set of observations we have chosen have been descriptive enough to
be efficient in the localization process. We think that the way we determine
the number of doors and ceiling lights has been the key for the success of the
localization system.

We believe that probabilistic navigation techniques hold great promise for
getting legged robots reliable enough to operate in real office environments.
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